“边缘计算”是什么为何潜力无限发展和应用前景介绍

  公司新闻     |      2024-04-30 15:10

  8月15日消息,知名创投调研机构CB Insights撰文详述了边缘计算的发展和应用前景。文章称,云计算已经不足以即时处理和分析由物联网设备、联网汽车和其他Kaiyun平台 开云体育官方入口数字平台生成或即将生成的数据,这个时候边缘计算能够派上用Kaiyun体育官方网站 开云登录网站场。该技术拥有着应用于诸多行业领域和发挥巨大作用的潜力。

  有时更快的数据处理是一种奢侈有时它生死攸关。

  例如,自动驾驶汽车本质上是一台装有轮子的高性能计算机,它通过大量的传感器来收集数据。为了使得这些车辆能够安全可靠地运行,它们需要立即对周围的环境做出反应。处理速度的任何延迟都有可能是致命的。虽然联网设备的数据处理现在主要是在云端进行的,但在中央服务器之间来回传送数据可能需要几秒钟的时间。这一时间跨度太长了。

“边缘计算”是什么为何潜力无限发展和应用前景介绍(图1)

  边缘计算则让自动驾驶汽车更快速地处理数据成为可能。这种技术使得联网设备能够处理在“边缘”形成的数据,这里的“边缘”是指位于设备内部或者与设备本身要近得多的地方。

  据估计,到2020年,每人每天平均将产生1.5GB的数据量。随着越来越多的设备连接到互联网并生成数据,云计算可能无法完全处理这些数据尤其是在某些需要非常快速地处理数据的使用场景当中。

  边缘计算是云计算以外的另一种可选解决方案,未来它的应用范围很有可能将远不止是无人驾驶汽车。

  包括亚马逊、微软和谷歌在内的一些科技巨头都在探索“边缘计算”技术,这可能会引发下一场大规模的计算竞赛。虽然亚马逊云服务Amazon Web Services(AWS)在公共云领域仍然占据主导地位,但谁将成为这个新兴的边缘计算领域的领导者仍有待观察。

  在本文中,我们将深入探讨什么是边缘计算,与该技术相关的优势,以及它在各行各业中的应用。

  在了解边缘计算之前,我们必须先来看看它的前身云计算是如何为遍布全球的物联网(IoT)设备铺平道路的。

  从可穿戴设备到联网厨房电器,联网设备可以说无处不在。据估计,到2019年,全球物联网市场规模将超过1.7万亿美元,较2013年的4860亿美元增长逾两倍。

  因此,云计算许多智能设备连接到互联网来运作的过程已经成为一种越来越主流的趋势。

  云计算使得公司能够在自己的物理硬件之外,通过远程服务器网络(俗称“云”)存储和处理数据(以及其他的计算任务)。

  例如,你可以选择使用苹果的iCloud云服务来备份你的智能手机,然后你可以通过另一个联网设备(比如你的台式电脑)检索智能手机里的数据,方法是登录你的账户连接到云。你的信息不再受到智能手机或台式机的内部硬盘容量的限制。

  这只是众多云计算用例之一。另一个例子是通过Web端或移动浏览器来访问各种完整的应用程序。由于云计算越来越受欢迎,它吸引了亚马逊谷歌、微软和IBM等大型科技公司入局。据私有云管理公司RightScale于2018年进行的一项调查显示,在主要的公共云提供商当中,亚马逊AWS和微软Azure分列第一和第二。

“边缘计算”是什么为何潜力无限发展和应用前景介绍(图2)

  但是集中式云计算并不适合所有的应用程序和用例。边缘计算则能够在传统云基础设施可能难以解决的领域提供解决方案。

  在我们到处充斥着数据的未来,将有数十亿部设备连接到互联网,因此更快更可靠的数据处理将变得至关重要。

  近年来,云计算的整合和集中化性质被证明具有成本效益和灵活性,但物联网和移动计算的兴起给网络带宽带来了不小的压力。

  最终,并不是所有的智能设备都需要利用云计算来运行。在某些情况下,这种数据的往返传输能够也应该避免。

  根据CB Insights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。虽然这是一个新兴领域,但在云计算覆盖的一些领域,边缘计算的运行效率可能要更高。

  边缘计算使得数据能够在最近端(如电动机、泵、发电机或其他的传感器)进行处理,减少在云端之间来回传输数据的需要。

“边缘计算”是什么为何潜力无限发展和应用前景介绍(图3)

  市场研究公司IDC称,边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中央数据中心或云存储库,其覆盖范围不到100平方英尺”。

  例如,一列火车可能包含可以立即提供其发动机状态信息的传感器。在边缘计算中,传感器数据不需要传输到火车上或者云端的数据中心,来查看是否有什么东西影响了发动机的运转。

  本地化数据处理和存储对计算网络的压力更小。当发送到云的数据变少时,发生延迟的可能性云端与物联网设备之间的交互导致的数据处理延迟就会降低。

  这也让基于边缘计算技术的硬件承担了更多的任务,它们包含用于收集数据的传感器和用于处理联网设备中的数据的CPU或GPU。

  随着边缘计算的兴起,理解边缘设备所涉及的另一项技术也很重要,它就是雾计算。

  边缘计算具体是指在网络的“边缘”处或附近进行的计算过程,而雾计算则是指边缘设备和云端之间的网络连接。

  换句话说,雾计算使得云更接近于网络的边缘;因此,根据OpenFog的说法,“雾计算总是使用边缘计算,而不是边缘计算总是使用雾计算。”

  说回我们的火车场景:传感器能够收集数据,但不能立即就数据采取行动。例如,如果一名火车工程师想要了解火车车轮和刹车是如何运行的,他可以使用历史累计的传感器数据来预测零部件是否需要维修。

  在这种情况中,数据处理使用边缘计算,但它并不总是即时进行的(与确定引擎状态不同)。而使用雾计算,短期分析可以在给定的时间点实现,而不需要完全返回到中央云。

“边缘计算”是什么为何潜力无限发展和应用前景介绍(图4)

  因此,要记住的是,虽然边缘计算给云计算带来补充,并且与雾计算Kaiyun体育官方网站 开云登录网站一起非常紧密地运作,但它绝不是二者的替代者。

  虽然边缘计算是一个新兴的领域,但是它拥有一些显而易见的优点,包括:

  实时或更快速的数据处理和分析:数据处理更接近数据来源,而不是在外部数据中心或云端进行,因此可以减少迟延时间。

  较低的成本:企业在本地设备的数据管理解决方案上的花费比在云和数据中心网络上的花费要少。

  网络流量较少:随着物联网设备数量的增加,数据生成继续以创纪录的速度增加。因此,网络带宽变得更加有限,让云端不堪重负,造成更大的数据瓶颈。

  更高的应用程序运行效率:随着滞后减少,应用程序能够以更快的速度更高效地运行。

  例如,如果一家公司使用中央云来存储它的数据,云一旦宕机,那么数据将无法访问,直至问题得到修复公司可能因而蒙受严重的业务损失。

  2016年,Salesforce网站的北美14站点(又名NA14)宕机超过24个小时。客户无法访问用户数据,从电话号码到电子邮件等等,业务运营遭受严重的破坏。

  此后,Salesforce将它的物联网云转移到亚马逊的AWS上,但是这次宕机事件凸显了仅仅依赖云的一大弊病。

  减少对云的依赖也意味着某些设备可以稳定地离线运行。这在互联网连接受限的地区尤其能够派上用场无论是在严重缺乏网络服务的特定地区,还是油田等通常无法访问的偏远地区。

  边缘计算的另一个关键优势与安全性和合规性有关。随着政府越来越关注企业如何利用消费者的数据,这一点尤为重要。

  欧盟(EU)最近实施的《通用数据保护条例》(GDPR)就是一例。该条例旨在保护个人可识别信息免遭数据滥用。

  由于边缘设备能够在收集和本地处理数据,数据不必传输到云端。因此,敏感信息不需要经由网络,这样要是云遭到网络攻击,影响也不会那么严重。

  边缘计算还能够让新兴联网设备和旧式的“遗留”设备之间实现互通。它将旧式系统使用的通信协议“转换成现代联网设备能够理解的语言”。这意味着传统工业设备可以无缝且高效地连接到现代的物联网平台。